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First-Principles calculations
at the atomic scale

 

• Electronic Structure
• Atomic forces and stresses
• Molecular Dynamics



The “ultimate model” for electrons in a material

ĤΨ = EΨ Ψ(r1, r2, . . . , rn)
We could compute “everything”



E = E[n] n(r)

{−∇2 + Veff [n](r)}ψi = εiψi

Veff [n](r) = Vext(r) + VH[n](r) + Vxc[n](r)

One electron

Density-functional theory



The	  SIESTA	  method	  for	  ab-‐ini4o	  materials	  simula4on

TranSIESTA:	  Electronic	  transport

HOMO	  and	  LUMO	  of	  DNA
(800	  atoms,	  small	  computer)
Linear-‐scaling	  calcula4on	  (1999)

Cu	  phthalocyanine
	  	  on	  Ag(001)
	  	  	  	  1400	  atoms	  

Soler,	  Artacho,	  García,	  Gale,	  Junquera,	  Ordejón,	  Sánchez-‐Portal
J.	  Phys.	  Cond.	  MaW	  (2002)

More	  than	  3600	  cita/ons

More	  than	  1000	  ac4ve	  users

Brandbyge,	  Mozos,	  Ordejón,	  Taylor	  and	  Stokbro
Phys.	  Rev.	  B.	  (2002)	  	  -‐-‐-‐	  900	  cita4ons

Localized atomic orbitals
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• Optimization of the SIESTA code

• Performance of a “Grand-Challenge” calculation

 OBJECTIVES
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Kinetic matrix elements T (R) ≡ 〈ψ∗
1 | − 1

2∇2|ψ2〉 can be obtained in exactly the same
way, except for an extra factor of k2 in equation (28):

Tl1m,l2m2,l(R) = 4π il1−l2−l

∫ ∞

0

1
2k4 dk jl(kR)i−l1ψ∗

1,l1m1
(k)il2ψ2,l2m2(k). (31)

Since we frequently use basis orbitals with a kink [7], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ryd for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as 〈ψ1|x|ψ2〉, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing 〈χ1|ψ2〉 as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = 〈φ̃µ|ψi〉 and φ̃µ is the dual orbital of φµ: 〈φ̃µ|φν〉 = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.
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the Bloch-state expansion coefficients cµi(k):

ψi (k, r) =
∑

µ′

eikRµ′φµ′(r)cµ′i (k) (43)

where the sum in µ′ extends to all basis orbitals in space, i labels the different bands, cµ′i = cµi

if µ′ ≡ µ and ψi (k, r) is normalized in the unit cell.
The electron density is then

ρ(r) =
∑

i

∫

BZ

ni(k)|ψi (k, r)|2 dk =
∑

µ′ν ′

ρµ′ν ′φ∗
ν ′(r)φµ′(r) (44)

where the sum is again over all basis orbitals in space, and the density matrix

ρµν =
∑

i

∫

BZ

cµi(k)ni(k)ciν(k)eik(Rν−Rµ) dk (45)

is real (for real φµ) and periodic, i.e. ρµν = ρµ′ν ′ if (ν, µ) ≡ (ν ′, µ′) (with ‘≡’ meaning again
‘equivalent by translation’). Thus, to calculate the density at a grid point of the unit cell, we
simply find the sum (44) over all the pairs of orbitals φµ,φν in the supercell that are nonzero
at that point.

In practice, the integral in (45) is performed in a finite, uniform grid of the BZ. The fineness
of this grid is controlled by a k-grid cutoff lcut , a real-space radius which plays a role equivalent
to the plane-wave cutoff of the real-space grid [43]. The origin of the k-grid may be displaced
from k = 0 in order to decrease the number of inequivalent k-points [44].

If the unit cell is large enough to allow a %-point-only calculation, the multiplication by
phase factors is skipped and a single real-matrix eigenvalue problem is solved (in this case,
the real matrix elements are accumulated directly in the first stage, if multiple overlaps occur).
In this way, no complex arithmetic penalty occurs, and the differences between %-point and
k-sampling are limited to a very small section of the code, while all the two-centre and grid
integrals always use the same real-arithmetic code.

9. Total energy

The Kohn–Sham [14] total energy can be written as a sum of a band-structure (BS) energy
plus some correction terms, sometimes called ‘double-count’ corrections. The BS term is the
sum of the energies of the occupied states ψi :

EBS =
∑

i

ni〈ψi |Ĥ |ψi〉 =
∑

µν

Hµνρνµ = Tr(Hρ) (46)

where spin and k-sampling notations are omitted here for simplicity. At convergence, theψi are
simply the eigenvectors of the Hamiltonian, but it is important to realize that the Kohn–Sham
functional is also perfectly well defined outside this so-called ‘Born–Oppenheimer surface’,
i.e. it is defined for any set of orthonormal ψi . The correction terms are simple functionals of
the electron density, which can be obtained from equation (35), and the atomic positions. The
Kohn–Sham total energy can then be written as

EKS =
∑

µν

Hµνρνµ − 1
2

∫

V H(r)ρ(r) d3r +
∫

(εxc(r) − V xc(r))ρ(r) d3r +
∑

I<J

ZIZJ

RIJ

(47)

where I, J are atomic indices, RIJ ≡ |RJ − RI |, ZI , ZJ are the valence ion pseudoatom
charges and εxc(r)ρ(r) is the exchange–correlation energy density. In order to avoid the long-
range interactions of the last term, we construct from the local pseudopotential V local

I , which
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We use the notation φ∗
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Density matrix
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Figure 5. (a) Convergence of the total energy and pressure in bulk silicon as a function of the
energy cutoff Ecut of the real-space integration mesh. Circles and continuous line: using a grid-cell
sampling of eight refinement points per original grid point. The refinement points are used only in
the final calculation, not during the selfconsistency iteration (see text). Triangles: two refinement
points per original grid point. White circles: no grid-cell sampling. (b) Bond length and angle of
the water molecule as a function of Ecut .

where α, β are spin indices, with up or down values. The coefficients cα
µi are obtained by

solving the generalized eigenvalue problem
∑

νβ

(H αβ
µν − EiSµνδ

αβ)c
β
νi = 0 (39)

where H αβ
µν , like ραβ

µν , is a (2N × 2N ) matrix, with N the number of basis functions:

H αβ
µν = 〈φµ|T̂ + V̂ KB + V NA(r) + δV H(r) + V

αβ
XC(r)|φν〉. (40)

This is in contrast to the collinear spin case, in which the Hamiltonian and density matrices can
be factorized into two N × N matrices, one for each spin direction. To calculate V

αβ
XC(r) we

first diagonalize the 2 × 2 matrix ραβ(r) at every point, in order to find the up and down spin
densities ρ↑(r), ρ↓(r) in the direction of the local spin vector. We then find V

↑
XC(r), V

↓
XC(r)

in that direction, with the usual local spin density functional [15], and we rotate V
αβ
XC(r) back

to the original direction. Thus, the grid operations are still basically the same, except that they
need now to be repeated three times, for the ↑↑, ↓↓ and ↑↓ components. Notice that ραβ(r)

and V
αβ
XC(r) are locally Hermitian, while H αβ

µν and ραβ
µν are globally Hermitian (H βα

νµ = H αβ∗
µν ),

so their ↓↑ components can be obtained from the ↑↓ ones.

8. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
calculations efficiently on smaller systems without using expensive superlattices. On the other

Generalized
eigenvalue problem

The SIESTA method for ab initio order-N materials simulation 2757

-40

-20

0

20

40

∆ 
E

t (
m

eV
) Si

-6

-4

-2

0

2

∆ 
d 

(m
A

ng
)

H2O

-15

-5

5

15

10 30 50 70 90

∆ 
P

 (
kb

ar
)

Ec (Ry)

-1

0

1

20 60 100 140 180

∆ 
α 

(o )

Ec (Ry)

Figure 5. (a) Convergence of the total energy and pressure in bulk silicon as a function of the
energy cutoff Ecut of the real-space integration mesh. Circles and continuous line: using a grid-cell
sampling of eight refinement points per original grid point. The refinement points are used only in
the final calculation, not during the selfconsistency iteration (see text). Triangles: two refinement
points per original grid point. White circles: no grid-cell sampling. (b) Bond length and angle of
the water molecule as a function of Ecut .

where α, β are spin indices, with up or down values. The coefficients cα
µi are obtained by

solving the generalized eigenvalue problem
∑

νβ

(H αβ
µν − EiSµνδ

αβ)c
β
νi = 0 (39)

where H αβ
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densities ρ↑(r), ρ↓(r) in the direction of the local spin vector. We then find V

↑
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↓
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in that direction, with the usual local spin density functional [15], and we rotate V
αβ
XC(r) back

to the original direction. Thus, the grid operations are still basically the same, except that they
need now to be repeated three times, for the ↑↑, ↓↓ and ↑↓ components. Notice that ραβ(r)

and V
αβ
XC(r) are locally Hermitian, while H αβ

µν and ραβ
µν are globally Hermitian (H βα

νµ = H αβ∗
µν ),

so their ↓↑ components can be obtained from the ↑↓ ones.

8. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
calculations efficiently on smaller systems without using expensive superlattices. On the other

Sµν = 〈φµ|φν〉

Hamiltonian

Output



Sparsity

1 2
3

4

5

Sµν and Hµν are sparse

ρµν is not strictly sparse but 
only a sparse subset is needed

(Finite-range
basis orbitals)
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•TASK 8.1: “Optimization of the SIESTA code”

–Massive parallelization for optimal performance in 
computers with thousands of processors (allowing the 
treatment of systems with many thousands of atoms)

–Operation in MPI (present) and OpenMP (future) modes.
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This is in contrast to the collinear spin case, in which the Hamiltonian and density matrices can
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↑
XC(r), V
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need now to be repeated three times, for the ↑↑, ↓↓ and ↑↓ components. Notice that ραβ(r)

and V
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XC(r) are locally Hermitian, while H αβ
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so their ↓↑ components can be obtained from the ↑↓ ones.
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Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
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Hamiltonian
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8. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
calculations efficiently on smaller systems without using expensive superlattices. On the other

Generalized
eigenvalue problem

Improvement of load-balancing
of real-space mesh operations
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was used, which highlight the difficulty of a proper

description of the dimer, even using fully quantum
mechanical calculations. In conclusion, the QM/MM

implementation performs well in the description of the

water dimer, with errors that reflect the basic limitations of
the MM model used. Our results are similar to those of

previous QM–MM implementations [20, 26, 27].

As a second test, we assess the influence of the MM
region on the QM region by calculating the induced dipole

moment of a QM molecule in a liquid environment of

215 MM water molecules and under periodic boundary
conditions. The dipole of the QM molecule is obtained by a

time average during a 10 ps molecular dynamics simula-
tion at 300 K. We obtain a value of 2.73 D, which sub-

tracting the value for the free molecule yields a dipole

change induced by the MM region of 0.69 D. This value is
close to the experimental one obtained for the difference

between the dipole of a water molecule in the gas phase

and that in ice, i.e., 0.75 D [28].
In summary, our method gives very reasonable results

for systems comprised of both QM and MM water

molecules.

3 Optimization of the parallel execution of grid
operations

In the original SIESTA parallelization, the distribution of the
real-space mesh data among processors was done in a

uniform way. The mesh points were divided in the Y and Z

directions (more precisely, along the second and third lat-
tice vectors) over the processors in a 2-D grid, so that each

processor was assigned a parallelepipedic sub-mesh that

extended along the X (first lattice vector) direction (see
Fig. 2a). A highly unbalanced workload resulted for cases

with a inhomogeneous ionic distribution (for example, for a

cluster centred at the origin, or for a slab perpendicular to

the Z direction). In QM–MM calculations, one typically
has a rather localized QM region immersed in the classical

system, so workload imbalance problems are likely to be

the norm. To exemplify the problem, we use as one of our
test cases a system of liquid water with a total of 7,161

molecules (262 QM and 6,899 MM). The QM molecules

are confined to the central region of a cubic box of 60 Å
side (Fig. 3a) and surrounded by the MM molecules. We

will compare this case with a system of the same size and

number of molecules, but where the QM and MM mole-
cules are uniformly distributed throughout the simulation

cell (Fig. 3b).
The imbalance problems can be visualized using the

PARAVER tool [29], which processes trace data obtained

during the execution of an instrumented version of the code
[30] and displays the information in a convenient way.

Figure 2c shows a computation with eight processors for

the inhomogeneous system of Fig. 3a. The blue, orange,
and red colours represent computing, global communica-

tion, and point-to-point communication events, respec-

tively. Global communications and start-end times of the
four key SIESTA routines described earlier have been

marked. Some problems are immediately obvious from the

trace. First, the computation and waiting times are different
for each processor. This is a symptom that the workload is

unbalanced among the processors. In particular, processors

1, 4, 5, and 8 seem to have been assigned mostly empty
regions of the box, with very little computation in all

routines except poison. Furthermore, the imbalance is

different for every routine, except for rhoofd and vmat,
which show similar behaviour. Second, there are too many

global communications. These all-to-all communications

are trying to make the relevant parts of the distributed data
structures available to those processors that need them, but

in a quite inefficient way. This is clearly seen in routines

Fig. 2 Original parallelization
of SIESTA. a Sketch of the
uniform 2-D real-space domain
decomposition; b Graph
showing the all-to-all (or global)
communications pattern;
c Execution trace of the four
main routines involved in the
real-space grid operations. The
eight horizontal bars represent
eight processes that at a given
instant can be computing (blue)
or communicating (red and
orange). This trace corresponds
to a test case involving a set of
262 water molecules distributed
inhomogeneously in the
simulation box, as shown in
Fig. 3a
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rhoofd and vmat, in which pieces of the density matrix
and the Hamiltonian, respectively, are passed around.

Figure 2b represents this state of affairs as a graph of

processes with fully connected nodes. The edges represent
portions of data held by each processor, which are sent to

others. In this case, the data are sent to all other processors,
so that many unnecessary data transfers are carried out in
the network.

Workload imbalance, even if relatively small, can lead

to gross inefficiencies in parallel operation, typically
manifested in a reduced speed-up when the number of

processors is increased, i.e., reduced scalability. The same

is true of the abuse of all-to-all communication patterns. To
correct these inefficiencies, we have developed new

approaches to the problems of mesh distribution and

communication scheduling.

3.1 Balanced mesh distribution

The key to the choice of an adequate mesh distribution

among processors is the use of a weight function that

represents the amount of work associated to each mesh
point. Seen in this light, the uniform distribution used in the

original version is appropriate only if the weight is the

same for all points, as is the case in the poison routine,
which basically performs an FFT on the data on the grid. In

general, though, the amount of calculation in each mesh

point is different and, crucially, depends on the type of
operation to be performed. Therefore, a properly load-

balanced calculation will need not just one, but several

distributions, which will alternate during the execution of
the driver program. Routine cellxc involves a bi-valued

weight function: 1 if the mesh point is touched by any basis

orbital, and 0 otherwise (when there is no charge density to
process). Routines vmat and rhoofd need a weight

function proportional to the square of the number of

orbitals touching the point, since the operations to be
performed involve pairs of orbitals. Only poison has a

flat weight, as described above.

So, SIESTA needs three different distributions for the grid
operations. For a given weight function, each processor is

assigned a parallelepipedic portion of the real-space grid,

determined using a recursive bisection algorithm [31], (see
Fig. 4a), which at each step creates new sub-domains

corresponding to regions of approximately equal compu-

tational cost.

3.2 Efficient communication scheduling

In order to improve the efficiency of the communications,

these are pre-scheduled. The pattern of communication can

be represented as before as a graph (of processes) in which
nodes represent processes and edges communication

between them (Fig. 4b). Rather than using indiscriminate

all-to-all broadcasts, as in Fig. 2b, it pays to consider in
detail the specific communication events really needed to

redistribute the appropriate pieces of the density matrix and

the Hamiltonian among the processors that need them to
complete mesh operations (in routines rhoofd and vmat,
respectively). With the use of these point-to-point com-

munications, the graph is no longer fully connected.
Furthermore, it becomes possible to schedule commu-

nications in such a way that those involving disjoint sets of

processors can take place at the same time. Our scheduling
algorithm uses the dual graph (of communications) pic-

tured to the right in Fig. 4b, in which nodes now represent

communication events and edges the processors involved,
so two nodes are connected by an edge if the same pro-

cessor is needed for the two communication events.

The search for concurrency opportunities in communica-
tion is now equivalent to the problem of colouring the

graph with the minimum number of colours in such a way

Fig. 3 QM–MM simulation
boxes with liquid water at
uniform density. Only the QM
molecules are shown. In a the
QM molecules are located in the
central area, while the MM
molecules are in the
surrounding region. In b the
distribution of QM and MM
molecules is uniform
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that nodes (communication events) connected by lines
(processors) do not share the same colour. Communica-

tions (nodes) of the same colour can then take place

simultaneously (see Fig. 4b). Graph colouring is an NP-
complete problem [32], but a heuristic can be used to find

closely optimal colourings. We use the iterative largest-first

algorithm [33], in which at every step or iteration a non-
coloured node is chosen and painted with a different colour

from its adjacent nodes. The selected node is one that has

the greater number of non-coloured adjacent nodes.

4 Showcase for parallelization results

4.1 Execution trace

Figure 4c, obtained for the same inhomogeneous system

as Fig. 2c, shows the reduction in global communications

and the much better balanced workload for all routines
that are achieved using the new parallelization of SIESTA.

Note that these improvements will be observed in general

by all systems, even if they are not intrinsically very
inhomogeneous, due to the operation-dependent workload

distribution.

4.2 Scalability tests

To analyse the improvements on the parallel performance of
SIESTA, we have used the two systems shown in Fig. 3.

While the typical QM–MM calculations have traditionally

used a relatively small QM part, in order to analyse the
scalability improvements, we have considered a moderately

large QM subsystem of 262 water molecules. With this
benchmark, we can employ up to 128 processors while

keeping a reasonable load on each processor. The system

sizes show the potential for QM–MM simulations with
large QM parts, which we aim at performing in the

future. In addition, the tests performed will be relevant

for more general kinds of systems and for fully QM
calculations.

For both cases in Fig. 3 (inhomogeneous and homoge-

neous distributions of QM molecules), we compare the
performances of the old version of SIESTA and of the new

version implementing the parallelization improvements. As

a measure of performance, we use the relative speed-up,
conceptually Sp = T1/Tp, which measures how much faster

the calculation is when using p processors instead of one.

To avoid artefacts stemming from different memory access
patterns,1 we actually use Sp = 8T8/Tp, taking as reference

a calculation with eight processors.

As the focus of these benchmarks is on the scalability
properties of the new parallelization of SIESTA, we do not

take into account any classical atoms in the calculations.

The grid-related operations performed by SIESTA are
called in the driver program from a parent routine dhscf,
and in what follows we use its overall performance as the

approximate figure of merit for the benchmarks, while still
discussing the individual performance of the four worker

routines already introduced. Figure 5 shows the speed-up

curves for the old (upper row) and new (lower row)

Fig. 4 New parallelization of
SIESTA. a Balanced real-space
domain decomposition by using
a recursive bisection algorithm;
b communication scheduling
generated by applying a
colouring algorithm to the graph
of communications. The same
colour means communications
that happen at the same time;
c idem Fig. 2c

1 The large system size implies a large total memory requirement,
which reflects in a slow-down for execution in a small number of
processors due to swapping, cache misses, etc.
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versions, for both the homogeneous (left side) and inho-

mogeneous (right side) QM sub-systems.
In all cases, one observes a progressive degradation of

the parallel efficiency (Sp/p) with processor count, but the

performance reduction of the original parallelization is
markedly worse, particularly, as expected, for the inho-

mogeneous case, in which the efficiency drops to 24% (see

Fig. 5c) due to the workload imbalance exemplified in
Fig. 2, compared to a more reasonable 64% for the

homogeneous case (see Fig. 5a). The new parallelization
improves performance significantly, with the efficiency

reaching 52% (see Fig. 5d) and 83% (see Fig. 5b) for the

inhomogeneous and the homogeneous case, respectively.
Before discussing the performance of the individual

routines, it should be noted that the use of three separate

data distributions in the new parallelization scheme intro-
duces extra communication needs for re-distribution of the

data arrays before and after the relevant operations. The

effect of these communications is included in the dhscf
curves for the new parallelization (Fig. 5b, d). For com-

pleteness, we also present in the plots the curves obtained

when the time spent in these communications is subtracted

from the total count for dhscf. These curves show that

these communications are of greater importance for the
inhomogeneous case due to the inherent non-uniformity of

data distribution. The parallel efficiency goes up to 71 and

87% when the extra communications are not counted.
Since there is no meaningful and unambiguous way to

assign the communication overhead to any particular sub-

routine of dhscf, the individual-routine curves in the
bottom plots of Fig. 4 refer to the net speed-up without re-

distribution communications. While this communication
overhead is obviously relevant for a global assessment of

performance, the net speed-up curves are a good measure

of the efficiency gains with respect to the old paralleliza-
tion scheme.

The scalability of the poison routine is the same for

both parallelizations and both test cases, homogeneous and
inhomogeneous, since its uniform data distribution is

intrinsically appropriate and was not modified. This rou-

tine, with an efficiency higher than 77%, exhibits the best
performance in the original parallel version. In the new

parallelization, in contrast, the rest of routines exhibit

better or at least similar performance: the cellxc
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Fig. 5 Speed-up and efficiency comparison, with reference to eight
processors, of the original (top row) and new (bottom row) SIESTA
parallelization schemes. Benchmark cases correspond to two water
boxes with homogeneous (left side) and inhomogeneous (right side)
molecular distributions, as shown in Fig. 3. The overall dhscf
speed-up for the new parallelization includes three data re-

distributions (communications) for routine pre-scheduling. For direct
comparison with the original parallelization, the contribution of these
communications is removed from the global speed-up in the curves
marked Dhscf-Comm. All calculations use the PBE GGA exchange-
correlation functional
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(Rogeli Grima, J.M. Cela, BSC)
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Optimization of the diagonalization:
Ideas to beat ScaLapack

• Use an iterative method, exploiting the 
sparse character of the H and S matrices.

• Krylov-type methods: Not appropriate when the 
number of eigenvectors to compute is relatively large.

• Split-spectrum methods for trivial 
parallelization at the top level.

ScaLapack: Uses dense matrices; limited scalability
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Sugiura-Sakurai and FEAST algorithms

Eigenvalue Solvers New ideas

Sugiura Sakurai and FEAST algorithms

Main work during the last year

Idea

Solving many (sparse)
linear systems

Massive parallelization
due to three levels

Reuse of data

Intermediate results

Reliable method

Promising for big problems

Georg Huhs — BSC’s work on Siesta

Eigenvalue Solvers New ideas

Sugiura Sakurai and FEAST algorithms

Problems

Less gain of reusing data than expected

Load balancing problem

Georg Huhs — BSC’s work on Siesta

(Implementation and benchmarking: Georg Huhs, BSC)
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Alternative electronic-structure method
Pole Expansion plus Selected Inversion

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(εi − µ) ≈ Im
P∑

l=1

ωl

εi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.
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1. Introduction

PEXSI is the name of a method that uses a pole expansion representation of the fermi operator
[1] to avoid the diagonalization usually needed in DFT codes. This representation would also yield
the critical O(n3) scaling with the system size, but when dealing with sparse matrices, the selected
inversion algorithm [2, 3] reduces the order to O(n2) for 3D systems and even further for systems with
reduced dimensionality. The implementation of this method is also called PEXSI, and PPEXSI is its
parallel version.

Siesta [4, 5] is a DFT code using localized orbitals as base functions, which results in sparse
Hamiltonian and overlap matrices. Thus this software is particularly interesting for spatially sparse
physical problems. Unfortunately the most powerful, reliable, and general eigenvalue solver, and thus
used in Siesta, is provided by ScaLAPACK, which does neither take advantage of the sparsity of the
matrices, nor does it scale well.

Siesta with PEXSI as solver can be a powerful combination because

• due to the better scaling with the system size (weak scaling) very big problems can be solved

• PEXSI has the potential for parallelization on two levels, enabling an efficient use of tens of
thousands of processors (strong scaling)

• data from SCF and MD iterations can be used for following iterations, which makes long running
calculations more efficient

These effects together make new classes of cutting edge physical problems approachable.

2. The PEXSI method

The algorithm’s name “PEXSI” reflects its two main ingredients: Pole EXpansion and Selected
Inversion.

The basic idea is to avoid diagonalization of the Hamiltonian with its unfavorable O(N3) scaling by
computing the density matrix directly from the Fermi operator. An efficient representation of the Fermi
operator is given by the pole expansion presented in [1]. For evaluating a term in this representation, a
matrix constructed from the Hamiltonian and overlap matrices needs to be inverted, which is basically
also an O(N3) operation. But when dealing with sparse matrices, like the ones generated from Siesta,
the selected inversion algorithm [2] reduces this order by calculating only the elements that are really
needed.

For sufficiently big problems PEXSI gives the following weak scaling:
(quasi-)1D: O(N)
(quasi-)2D: O(N3/2)

3D: O(N2)

2.1. Theory

The central element in DFT is the the electron density ρ̂(x) being the diagonal of the density matrix

γ̂(x, x′) =
∞∑

i=1

ψi(x)fβ(εi − µ)ψ"
i (x

′) (1)

with the orbitals ψi(x) and their occupation given by the Fermi-Dirac function

fβ(εi − µ) =
2

1 + eβ(εi−µ)
(2)
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This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.
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)

(A =)LDLT =

(
1
l L̂

)(
α
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BSC 2

1. Introduction

PEXSI is the name of a method that uses a pole expansion representation of the fermi operator
[1] to avoid the diagonalization usually needed in DFT codes. This representation would also yield
the critical O(n3) scaling with the system size, but when dealing with sparse matrices, the selected
inversion algorithm [2, 3] reduces the order to O(n2) for 3D systems and even further for systems with
reduced dimensionality. The implementation of this method is also called PEXSI, and PPEXSI is its
parallel version.

Siesta [4, 5] is a DFT code using localized orbitals as base functions, which results in sparse
Hamiltonian and overlap matrices. Thus this software is particularly interesting for spatially sparse
physical problems. Unfortunately the most powerful, reliable, and general eigenvalue solver, and thus
used in Siesta, is provided by ScaLAPACK, which does neither take advantage of the sparsity of the
matrices, nor does it scale well.

Siesta with PEXSI as solver can be a powerful combination because

• due to the better scaling with the system size (weak scaling) very big problems can be solved

• PEXSI has the potential for parallelization on two levels, enabling an efficient use of tens of
thousands of processors (strong scaling)

• data from SCF and MD iterations can be used for following iterations, which makes long running
calculations more efficient

These effects together make new classes of cutting edge physical problems approachable.

2. The PEXSI method

The algorithm’s name “PEXSI” reflects its two main ingredients: Pole EXpansion and Selected
Inversion.

The basic idea is to avoid diagonalization of the Hamiltonian with its unfavorable O(N3) scaling by
computing the density matrix directly from the Fermi operator. An efficient representation of the Fermi
operator is given by the pole expansion presented in [1]. For evaluating a term in this representation, a
matrix constructed from the Hamiltonian and overlap matrices needs to be inverted, which is basically
also an O(N3) operation. But when dealing with sparse matrices, like the ones generated from Siesta,
the selected inversion algorithm [2] reduces this order by calculating only the elements that are really
needed.

For sufficiently big problems PEXSI gives the following weak scaling:
(quasi-)1D: O(N)
(quasi-)2D: O(N3/2)

3D: O(N2)

2.1. Theory

The central element in DFT is the the electron density ρ̂(x) being the diagonal of the density matrix

γ̂(x, x′) =
∞∑

i=1

ψi(x)fβ(εi − µ)ψ"
i (x

′) (1)

with the orbitals ψi(x) and their occupation given by the Fermi-Dirac function

fβ(εi − µ) =
2

1 + eβ(εi−µ)
(2)
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Pole Expansion plus Selected Inversion
(Lin Lin, Chao Yang, LBNL)

Trivially parallel over poles, with perfect load balancing

Will beat Scalapack for large systems: It can use thousands
of cores efficiently, with small memory footprint.

There is still scope for further optimization of the factorization
and inversion operations

(Due to sparsity of
the target density matrix)
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Pole Expansion plus Selected Inversion  (PEXSI)

Implementation of interface to SIESTA and benchmarking:
Alberto García (ICMAB) and Georg Huhs (BSC)

Development of heuristics to handle the variation of
the chemical potential during the self-consistent-field updates

PEXSI FOR SIESTA - PROTOTYPE PHASE 7

3.3.2. Systems examined

MoS-BN is with its 638 atoms still relatively small, but interesting to compare with DNA. These
systems have roughly the same size, but due to the denser packing of the atoms in the layered system,
its fraction of nonzeros is much larger.

The basic C-BN-C unit cell used here is the smallest one possible for this combination of materials,
but contains already about 2500 atoms. To simulate larger problems, as well as for doing a weak
scaling analysis, supercells containing 2x2 and 4x2 unit cells were constructed.

Figure 3. Visualization of the C-BN-C example. On the left hand side a single unit cell is shown, on
the right hand side a magnified top-view of a part of it, displaying the effect of the slightly differing

atomic distances.
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Main test systems: quasi-2D C-BN structures



Final Conference, BCN May 27-28, 2013-- Materials Science

O(N) functional

• Sij =<ψi|ψj>,  |ψ’k> = ∑j |ψj> Sjk−1/2

• EKS = Tr[S−1 H]
• EO(N) = Tr[(2I−S) H]
• EKS = EO(N) at the minimum

O(N)

KS

Energy penalty from
non-orthogonality

Optimization of sparse-matrix operation (CASE)
Easier case: Minimization without localization (CASE, F. Corsetti)

ψ

r
c
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•TASK 8.2: “Tools for data handling and implementation 

of new simulation techniques”

• New library to process operational parameters in parallel 
(Raúl de la Cruz, BSC)

• Use of more efficient formats for data storage (HDF5, 
ongoing)

• Implementation of a mechanism to dispatch tasks in 
parallel, used to drive SIESTA from a Path-Integral program.
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Quantum effects described by Path-Integral method
Isomorphism to a classical system

with replicated particles

Each calculation is independent
The method is thus trivially parallelizable

JM. Soler (UAM), Rafael Ramírez (ICMM)
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van der Waals interactions

Non-local functional, implemented efficiently in SIESTA
(JM Soler, UAM)

000000-7 The effect of vdW interactions in water J. Chem. Phys. 133, 000000 (2010)

IV. ANALYSIS AND DISCUSSION447

A. Intermolecular interactions448

Since the vdW attraction of vdW-DFs does not reduce449

the H-bond distances (actually they increase, relative to their450

GGA counterparts), what causes the large increase in equi-451

librium density? One possibility is that the stronger H bonds,452

shown in Fig. 7(b), increase the average first-neighbor coor-453

dination. However, the height of the first peak in gOO(r ), as454

shown in Figs. 4 and 5, actually decreases from the GGAs to455

the vdW-DFs. Therefore, we are left only with the third pos-456

sibility mentioned before, i.e., an increase in the occupation457

of the “interstitial,” non-H-bonded sites.458

In order to characterize the vdW binding between wa-459

ter molecules, we have calculated the interaction energy be-460

tween two water molecules oriented as shown in Figure 7(a),461

thus avoiding the hydrogen bond interaction. By comparison,462

we also use PBE and revPBE. Figure 7(a) clearly shows that463

FIG. 7. Total energy of the water dimer as a function of the intermolecular
separation for two different molecular orientations calculated for PBE (cir-
cles), revPBE (squares), DRSLL (diamonds), and DRSLL-PBE (triangles).
(a) Non-H-bonded configuration as shown in the inset (with partially facing
O lone pairs from each molecule). (b) H-bonded configuration as shown in
the inset. In both graphs the energies have been shifted to have the zero at the
largest separation.

DRSLL exhibits a minimum in the potential at ∼3.7 Å with a 464

binding energy of 10 meV, not shown by the GGAs. Although 465

this is many times times weaker than the H bond, it will have 466

an important effect in increasing the occupation of the intersti- 467

tial sites, which are roughly at that distance. It is worth noting 468

that the position of this potential energy minimum is close to 469

the first minimum of gOO(r ), obtained with the GGAs. This 470

means that this new ‘vdW bond’, and its effect on increas- 471

ing the occupation of interstitial sites, may account for the 472

unusual hump appearing in the gOO(r ) of DRSLL at this dis- 473

tance, as seen in Fig. 5. The potential energy minimum in 474

DRSLL-PBE is even deeper (25 meV) and shifted to shorter 475

distances (3.4 Å). This is also the origin of the increase of 476

the height of the first gOO(r ) minimum from PBE to DRSLL- 477

PBE. 478

We have also computed the H-bond potential energy 479

curve between two water molecules in a H-bond configura- 480

tion. The results are shown in Fig. 7(b). The depth of the 481

potential is lower than the optimal H-bond interaction en- 482

ergy because the geometry of the molecules was not opti- 483

mized. Still, the results show the same tendency observed in 484

the RDF and in Table III. When the vdW functional is in- 485

cluded, the energy of the H bond interaction increases by ap- 486

proximately 25 meV independently of the GGA used to de- 487

scribe the exchange interaction. Therefore, the weakening of 488

the H-bond network by vdW interactions (reduction of the 489

first and second coordination peaks) is not associated to the 490

weakening of the H bond itself, but to the increase of new, fa- 491

vorable, non-H-bonded configurations that compete with the 492

H bonds. 493

B. Spatial distribution functions 494

RDFs give angular-integrated information, but the angu- 495

lar distribution of molecules around a given one also con- 496

tains very valuable information that can differentiate between 497

similar RDFs. In Fig. 8 we plot the O–O spatial distribution 498

functions72 (SDF) gOO(r, θ,φ) for three functionals. The po- 499

lar angles θ,φ are referred to as a local coordinate set of the 500

central molecule, with origin at the oxygen atom: x (direc- 501

tion of the ĤOH angle bisector), y (perpendicular to x , within 502

the molecular plane) and z (normal to the molecular plane). 503

We plot isosurfaces gOO(r, θ,φ) = gc, restricted to spherical 504

shells of thickness δr = 0.2 Å centered at three different dis- 505

tances r : (i) at the first maximum of gOO(r ), with gc = 2, 506

Figs. 8(a)–8(c); (ii) at the first minimum of gOO(r ), with 507

gc = 0.5, Figs. 8(d)–8(f); and (iii) at the second maximum 508

of gOO(r ), with gc = 1, Figs. 8(g)–8(i). To ease the visualiza- 509

tion we show three different viewpoints (front, top, and side) 510

for each shell. 511

Figure 8 compares the O–O SDF of PBE, DRSLL, and 512

DRSLL-PBE water at 1.0 g/cm3. We omit revPBE because 513

of its close similarity to PBE. The structure of the first maxi- 514

mum is almost identical for all the functionals considered, i.e., 515

nearly tetrahedral. The density of acceptor molecules (lobes in 516

front of the H atoms) is much more localized than the density 517

of donor molecules (lobes in the region of the oxygen lone 518

pairs behind the oxygen atom) which is more disperse. This 519

Another important information to assess the ability of
clathrates to incorporate hydrocarbons is the maximum
molecular size that they can accommodate. Table III
reports the energy gain to incorporate hydrocarbon
molecules of various sizes in different cavities, and
Figs. 3(a)–3(e) show their relaxed geometries. Also, we
show in Fig. 3(f) the remarkably deformed geometry of the
51268 cavity of structure H, saturated with 5 CH4 mole-
cules. This is similar to the capacity of porous metal-
organic framework-5 to incorporate hydrogen [25,26].
From the data of Table III we conclude that C4H10 alone
is not enough to stabilize energetically the clathrate with
respect to ice.

The diffusion of guest molecules through the clathrate
solid is an essential information concerning their possible
storage and extraction. The calculated energy barriers re-
quired for the molecules to pass from one clathrate cavity
to a neighbor one are shown in Fig. 4. The relaxation of the
host lattice is of paramount importance, and we observe
that the energy barrier depends strongly on the molecule.
For H2, we obtain a barrier of 0.28 eV, close to the value of
0.250–0.283 eV calculated by Alavi and Ripmeester [10]
using quantum chemistry methods in unrelaxed isolated
cages. The diffusion of H2 has been measured by using
NMR [27] obtaining a high diffusivity and an estimated
activation energy of about 0.03 eV. The large discrepancy

may be due to the fact that we consider a single guest
molecule in the unit cell, and it indicates the need for
further study. The barrier for methane is much larger
(1.17 eV), and it entails a substantial relaxation of the
host structure. The unrelaxed H-bond length (1.82 Å) of
the host hexagon becomes 1.89, 1.98, and 2.15 Åwhen the
H2, CO2, and CH4 molecules, respectively, pass through it.

FIG. 2 (color online). Equilibrium position of H2, CO2, and
CH4 molecules trapped in the 51268 cavity of the clathrate
structure H, obtained by using the van der Waals density func-
tional. The indicated positions are for individual molecules in the
cavity. The relevant distances to the cage faces are indicated. The
oxygen atoms of the cavity are indicated by small red circles.
The broken lines serve as a guide to the eye.

TABLE III. Adsorption energies !E (in eV) of different hy-
drocarbons in various clathrate cavities.

Molecule Cavity Host !E (eV)

C2H6 435663 H !0:18
C2H6 512 H !0:24
C3H8 512 H þ0:54
C3H8 435663 H þ0:24
C3H8 51262 I !0:37
Twisted C4H10 51262 I þ0:06
Twisted C4H10 51268 H !0:76
Elongated C4H10 51262 I þ0:33
Elongated C4H10 51268 H !0:86
Isobutane C4H10 51262 I þ0:10
Isobutane C4H10 51268 H !0:81

FIG. 3 (color online). Hydrocarbon chains accommodated in-
side the different cavities of clathrates. (a) Ethane (C2H6) at the
435663 cavity of structure H. (b) Ethane at the 512 cavity of
structure H. (c) Propane (C3H8) at the 51262 cavity of the
structure I. (d)–(e) Twisted ant elongated butane molecule
(C4H10) at the 51268 cavity of structure H. (f) Five methane
(CH4) molecules inside the 51268 cavity of structure H. The
oxygen atoms of water molecules are indicated by small red
circles. The hydrogen atoms are not shown. The broken lines are
guides to the eye for a better visualization of the structure.

TABLE II. Incremental adsorption energies (work to adsorb
each new molecule, in eV) of CO2 and CH4 molecules in the
51268 cavity of structure H.

Molecules 1 2 3 4 5 6 7

CH4 !0:48 !0:42 !0:48 !0:30 !0:17 þ0:35 # # #
CO2 !0:38 !0:37 !0:47 !0:31 þ0:05 þ0:10 þ1:27

PRL 105, 145901 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

1 OCTOBER 2010

145901-3

Residual interactions in water
Roman-Perez, Moaied, Soler, Yndurain. PRL (2010)

Stability of clathrate hydrates
Wang, Roman-Perez, Soler, Artacho, Fernandez-Serra, JCP (2011)
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Quantum and van der Waals effects
in hydrogen-rich systems: water and clathrate hydrates

the modes with increasing pressure, favoring smaller
volumes for lighter isotopes. Thus, the anomalous
isotope effect, VðH2OÞ<VðD2OÞ, is due to the negative
!k of the covalent OH stretching modes (!#
3100–3500 cm$1) which have more than 95% H weight.
Although the likewise H-dominated librational modes
(!#600–1000cm$1) have a positive !k, they are not
enough to balance the volume shrinking contribution of
the stretching frequencies. In the case of the TTM3-F force
field, the two contributions are very small and almost
completely cancel out, effectively producing a very har-
monic ice crystal, with a tiny anomalous effect at high T.
On the other hand, q-TIP4P/F largely underestimates the
OH-O/OH anticorrelation, predicting a normal isotope
effect for all temperature ranges. Long range torsional

modes, representing rigid tetrahedral rotations with ! %
50 cm$1, also have !k < 0. These modes are responsible
for the negative thermal expansion below 70 K. The bend-
ing modes, with !k ¼ 1700 cm$1 and !k % 0 have little
effect on volume.
Substitution of 16O by 18O affects mainly the low fre-

quency modes, dominated by positive values of !k, pro-
ducing a normal isotope effect. The temperature
dependence of the isotopic O substitution is also normal,
and the volume shift is 50% smaller at T ¼ 220 K than at
T¼100K. Somewhat surprisingly, the net effect at T ¼ 0,
relative to classical nuclei, is dominated by quantum oxy-
gen, resulting in a quantum volume#1% larger. This small
expansion (10 times smaller than that of Ne) is a conse-
quence of two competing anharmonicities: the contraction
effect of H-dominated stretching modes and the expansion
effect of librational and translational modes. As T in-
creases, the contribution of the stretching modes becomes
dominant, causing the net quantum effect to change sign
and to become anomalous above #70 K. This dominance
increases with T, making the volume shift 4 times larger at
the melting temperature than at T ¼ 0. These results are
not inconsistent with the requirement that, at high enough
T the isotope shift is isotope independent, but we find
that the convergence towards the classical limit starts at
T >#900 K.
Our results may also have significant implications for

the understanding of nuclear quantum effects in liquid
water (in which the anomalous isotope shift is experimen-
tally larger than in ice [14]). PIMD simulations, using the
q-TIP4P/F and TTM3-F EFFs, produce a less structured
liquid than classical molecular-dynamic (MD) simulations
[2,3,23]. However, as we have seen, these EFFs do not
reproduce the anomalous isotope effect in ice, because they
fail to describe accurately the derivatives of the frequen-
cies, which govern the anharmonicities and the nuclear
quantum effects in the structure and dynamics. This sug-
gests that these models may be inadequate to reproduce
some quantum effects in the liquid as well as in the solid.
Therefore, the observed loss of structure in the liquid,
for quantum vs classical nuclei, should be reanalyzed
with an EFF that reproduces the anomalous quantum
effects in ice.
In conclusion, we have shown that the anomalous nu-

clear quantum effects on the volume of ice can be fully
understood using the quasiharmonic approximation with
density-functional theory. The study fully explains a rare,
seldom mentioned, property of ice which should be in-
cluded in the list of water anomalies [38], as an example in
which quantum effects are anomalous and increase with
temperature.
We thank Christian Thomsen for suggestions at the early

stage of this work. The work at Stony Brook University is
supported by DOE Grants No. DE-FG02-09ER16052
(M.V. F. S) and No. DE-FG02-08ER46550 (P. B. A). Work
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FIG. 3 (color online). Top: Density of vibrational states for
H2O, projected onto H and O atoms, for the ordered ice Ih
structure, as obtained with vdW-DFPBE functional. Bottom:
Average Grüneisen constants of the different modes.
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• TASK 8.3: “Preparation and Execution of  Radiation Damage simulations”

α-decay process

Recoil

~ 100 keV

α-particle

~ 5 MeV

Produces:
– Amorphization
– Swelling
– Fragilization
– Fractures
– ...

• Simulation of  “atomic” collisions.

• Energy loss due to electron heating effects (coupled electron-ion dynamics)

Thousands of atoms, and long times, needed in the simulation
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Figure 1 |Graphene device schematic and STMmoiré images. a, Schematic of the measurement set-up showing the STM tip and an optical microscope
image of one of the measured samples. b, Superlattice wavelength (black) and rotation (red) as a function of the angle between the graphene and hBN
lattices. c–e, STM topography images showing 2.4 nm (c), 6.0 nm (d) and 11.5 nm (e) moiré patterns. Typical imaging parameters were sample voltages
between 0.3 V and 0.5 V and tunnel currents between 100 pA and 150 pA. The scale bars in all images are 5 nm.

Dips in the calculated ⇢(r,E) are clearly seen in Fig. 2a. The
energy of these dips changes as a function of the rotation angle �
and hence the moiré wavelength. We have also observed the dips
in the experimental dI/dV curves as shown in Fig. 2b. The black
curve is for a 9.0 nm moiré pattern and the energy of the dip is
0.28 eV from the Dirac point. The red curve is for a 13.4 nm moiré
pattern and the energy of the dips decreases to 0.22 eV from the
Dirac point. Both experimentally and theoretically, we found that
the relative strength of the dips in the conduction and valence band
are different, with the dip in the valence band being much deeper
than the dip in the conduction band. In our numerical calculations,
we identified that most of this asymmetry arises because of next-
nearest-neighbour interlayer coupling, which effectively induces
modulated hopping between different graphene sublattices and
breaks electron–hole symmetry (see Supplementary Information).
Figure 2c plots |d2I/dV2| for the 9.0 nmmoiré pattern as a function
of gate voltage and sample voltage. We clearly see the Dirac point in
this measurement crossing the Fermi energy near zero gate voltage.
There is a second dip which moves parallel to it that is offset
by �0.28V in sample voltage. This dip is due to the superlattice
periodic potential induced by the hBN and indicates the emergence
of new superlattice Dirac points.

We have observed these dips in the LDOS for seven different
moiré wavelengths. The energy of the dips from the Dirac
point is plotted (red points) as a function of wavelength in
Fig. 2d. The solid black line plots the expected energy dependence
E = h̄vF|G|/2 = 2⇡ h̄vF/

p
3⌦, assuming the linear band structure

of graphene and vF = 1.1 ⇥ 106 m s�1. For the necessary high-
resolution spectroscopy, our STM is limited to observing dips in
an energy range of ⇠±1V, which restricts the moiré wavelengths
to longer than 2 nm. At higher energies, the spectroscopy
tends to be smoothed by interaction effects which modify the

lifetime of the graphene quasiparticles20, making the identification
of dips difficult.

To better understand these dips, we focus on the low-energy
regime and neglect intervalley scattering in graphene. This is
justified by the energy range in our STM experiments and the
long wavelength of the moiré potential. The interlayer hopping
term between the graphene and hBN layers reflects the same
periodic structure as the moiré pattern4. Therefore we model the
influence of the hBNby an effective periodic potential with the same
symmetry as the observed moiré pattern. We accordingly consider
the single-valley Hamiltonian

Ĥ = h̄vFk ·� +V
X

↵

cos(G↵x) I

where k = (kx ,ky), � is a vector of Pauli matrices and I is the
identity matrix. The potential strength is estimated as V = 0.06 eV
from numerical second-order perturbation theory, and the G↵

are the reciprocal superlattice vectors corresponding to the
periodic potential generated by the hBN substrate. The reciprocal
superlattice vector G1 = (4⇡/

p
3⌦)(cos✓ ,sin✓) is determined by

the relative rotation of the graphene and hBN lattices according
to equations (1) and (2). The other superlattice wave vectors are
obtained by two rotations of 60�. Larger superlattice vectors are not
included in our model, because the corresponding couplings are
smaller bymore than one order of magnitude4.

The dips in ⇢(r,E) are due to k! �k processes induced by the
periodic potential for values 2k=G↵ corresponding to one of the
reciprocal superlattice vectorsG↵ . Unlike for Schrödinger particles,
the chirality of the Dirac fermions prevents such processes from
opening a bandgap at the edges of the superlattice Brillouin zone,
as long as the potential does not break sublattice symmetry (see
Supplementary Information).
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Figure 1 |Graphene device schematic and STMmoiré images. a, Schematic of the measurement set-up showing the STM tip and an optical microscope
image of one of the measured samples. b, Superlattice wavelength (black) and rotation (red) as a function of the angle between the graphene and hBN
lattices. c–e, STM topography images showing 2.4 nm (c), 6.0 nm (d) and 11.5 nm (e) moiré patterns. Typical imaging parameters were sample voltages
between 0.3 V and 0.5 V and tunnel currents between 100 pA and 150 pA. The scale bars in all images are 5 nm.

Dips in the calculated ⇢(r,E) are clearly seen in Fig. 2a. The
energy of these dips changes as a function of the rotation angle �
and hence the moiré wavelength. We have also observed the dips
in the experimental dI/dV curves as shown in Fig. 2b. The black
curve is for a 9.0 nm moiré pattern and the energy of the dip is
0.28 eV from the Dirac point. The red curve is for a 13.4 nm moiré
pattern and the energy of the dips decreases to 0.22 eV from the
Dirac point. Both experimentally and theoretically, we found that
the relative strength of the dips in the conduction and valence band
are different, with the dip in the valence band being much deeper
than the dip in the conduction band. In our numerical calculations,
we identified that most of this asymmetry arises because of next-
nearest-neighbour interlayer coupling, which effectively induces
modulated hopping between different graphene sublattices and
breaks electron–hole symmetry (see Supplementary Information).
Figure 2c plots |d2I/dV2| for the 9.0 nmmoiré pattern as a function
of gate voltage and sample voltage. We clearly see the Dirac point in
this measurement crossing the Fermi energy near zero gate voltage.
There is a second dip which moves parallel to it that is offset
by �0.28V in sample voltage. This dip is due to the superlattice
periodic potential induced by the hBN and indicates the emergence
of new superlattice Dirac points.

We have observed these dips in the LDOS for seven different
moiré wavelengths. The energy of the dips from the Dirac
point is plotted (red points) as a function of wavelength in
Fig. 2d. The solid black line plots the expected energy dependence
E = h̄vF|G|/2 = 2⇡ h̄vF/

p
3⌦, assuming the linear band structure

of graphene and vF = 1.1 ⇥ 106 m s�1. For the necessary high-
resolution spectroscopy, our STM is limited to observing dips in
an energy range of ⇠±1V, which restricts the moiré wavelengths
to longer than 2 nm. At higher energies, the spectroscopy
tends to be smoothed by interaction effects which modify the

lifetime of the graphene quasiparticles20, making the identification
of dips difficult.

To better understand these dips, we focus on the low-energy
regime and neglect intervalley scattering in graphene. This is
justified by the energy range in our STM experiments and the
long wavelength of the moiré potential. The interlayer hopping
term between the graphene and hBN layers reflects the same
periodic structure as the moiré pattern4. Therefore we model the
influence of the hBNby an effective periodic potential with the same
symmetry as the observed moiré pattern. We accordingly consider
the single-valley Hamiltonian

Ĥ = h̄vFk ·� +V
X

↵

cos(G↵x) I

where k = (kx ,ky), � is a vector of Pauli matrices and I is the
identity matrix. The potential strength is estimated as V = 0.06 eV
from numerical second-order perturbation theory, and the G↵

are the reciprocal superlattice vectors corresponding to the
periodic potential generated by the hBN substrate. The reciprocal
superlattice vector G1 = (4⇡/

p
3⌦)(cos✓ ,sin✓) is determined by

the relative rotation of the graphene and hBN lattices according
to equations (1) and (2). The other superlattice wave vectors are
obtained by two rotations of 60�. Larger superlattice vectors are not
included in our model, because the corresponding couplings are
smaller bymore than one order of magnitude4.

The dips in ⇢(r,E) are due to k! �k processes induced by the
periodic potential for values 2k=G↵ corresponding to one of the
reciprocal superlattice vectorsG↵ . Unlike for Schrödinger particles,
the chirality of the Dirac fermions prevents such processes from
opening a bandgap at the edges of the superlattice Brillouin zone,
as long as the potential does not break sublattice symmetry (see
Supplementary Information).
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Figure 1 |Graphene device schematic and STMmoiré images. a, Schematic of the measurement set-up showing the STM tip and an optical microscope
image of one of the measured samples. b, Superlattice wavelength (black) and rotation (red) as a function of the angle between the graphene and hBN
lattices. c–e, STM topography images showing 2.4 nm (c), 6.0 nm (d) and 11.5 nm (e) moiré patterns. Typical imaging parameters were sample voltages
between 0.3 V and 0.5 V and tunnel currents between 100 pA and 150 pA. The scale bars in all images are 5 nm.

Dips in the calculated ⇢(r,E) are clearly seen in Fig. 2a. The
energy of these dips changes as a function of the rotation angle �
and hence the moiré wavelength. We have also observed the dips
in the experimental dI/dV curves as shown in Fig. 2b. The black
curve is for a 9.0 nm moiré pattern and the energy of the dip is
0.28 eV from the Dirac point. The red curve is for a 13.4 nm moiré
pattern and the energy of the dips decreases to 0.22 eV from the
Dirac point. Both experimentally and theoretically, we found that
the relative strength of the dips in the conduction and valence band
are different, with the dip in the valence band being much deeper
than the dip in the conduction band. In our numerical calculations,
we identified that most of this asymmetry arises because of next-
nearest-neighbour interlayer coupling, which effectively induces
modulated hopping between different graphene sublattices and
breaks electron–hole symmetry (see Supplementary Information).
Figure 2c plots |d2I/dV2| for the 9.0 nmmoiré pattern as a function
of gate voltage and sample voltage. We clearly see the Dirac point in
this measurement crossing the Fermi energy near zero gate voltage.
There is a second dip which moves parallel to it that is offset
by �0.28V in sample voltage. This dip is due to the superlattice
periodic potential induced by the hBN and indicates the emergence
of new superlattice Dirac points.

We have observed these dips in the LDOS for seven different
moiré wavelengths. The energy of the dips from the Dirac
point is plotted (red points) as a function of wavelength in
Fig. 2d. The solid black line plots the expected energy dependence
E = h̄vF|G|/2 = 2⇡ h̄vF/

p
3⌦, assuming the linear band structure

of graphene and vF = 1.1 ⇥ 106 m s�1. For the necessary high-
resolution spectroscopy, our STM is limited to observing dips in
an energy range of ⇠±1V, which restricts the moiré wavelengths
to longer than 2 nm. At higher energies, the spectroscopy
tends to be smoothed by interaction effects which modify the

lifetime of the graphene quasiparticles20, making the identification
of dips difficult.

To better understand these dips, we focus on the low-energy
regime and neglect intervalley scattering in graphene. This is
justified by the energy range in our STM experiments and the
long wavelength of the moiré potential. The interlayer hopping
term between the graphene and hBN layers reflects the same
periodic structure as the moiré pattern4. Therefore we model the
influence of the hBNby an effective periodic potential with the same
symmetry as the observed moiré pattern. We accordingly consider
the single-valley Hamiltonian

Ĥ = h̄vFk ·� +V
X

↵

cos(G↵x) I

where k = (kx ,ky), � is a vector of Pauli matrices and I is the
identity matrix. The potential strength is estimated as V = 0.06 eV
from numerical second-order perturbation theory, and the G↵

are the reciprocal superlattice vectors corresponding to the
periodic potential generated by the hBN substrate. The reciprocal
superlattice vector G1 = (4⇡/

p
3⌦)(cos✓ ,sin✓) is determined by

the relative rotation of the graphene and hBN lattices according
to equations (1) and (2). The other superlattice wave vectors are
obtained by two rotations of 60�. Larger superlattice vectors are not
included in our model, because the corresponding couplings are
smaller bymore than one order of magnitude4.

The dips in ⇢(r,E) are due to k! �k processes induced by the
periodic potential for values 2k=G↵ corresponding to one of the
reciprocal superlattice vectorsG↵ . Unlike for Schrödinger particles,
the chirality of the Dirac fermions prevents such processes from
opening a bandgap at the edges of the superlattice Brillouin zone,
as long as the potential does not break sublattice symmetry (see
Supplementary Information).
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Ongoing work

• Final refinements to PEXSI method to allow the 
performance of converged large scale calculations, 
including molecular dynamics simulations.

• Completion of the upgrade of the I/O subsystem 
in SIESTA.

• Further work on sparse matrix library to 
streamline the coding of the O(N) method.
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Collaborations

• Optimization of SIESTA: BSC-CASE.

• Pole-Expansion plus Selected-Inversion method: Lin Lin, 
Chao Yang (L. Berkeley Lab)

• Quasi-2D graphene-based systems: Miguel Pruneda, 
Rafael Martínez (CIN2, Barcelona)

• Radiation damage (D. Sánchez-Portal, centro mixto CSIC-
UPV (San Sebastián) and M. Pruneda, CIN2) 

• Structure of water and quantum effects:  M.V. Fernández-
Serra, Stony Brook U,  R. Ramírez, ICMM.

• Work towards GPU implementation: NVIDIA


